Analysing Musical Audio

Mark Plumbley
Centre for Digital Music
Queen Mary, University of London

Outline

A snapshot / lightning tour of some of our work in:

- Musical Audio Analysis
- Beat Analysis
- Music Transcription
- Visualisation
- Interaction
- Audio Source Separation
centre for digital music

Part 1. Musical Audio Analysis Beat analysis

Step 1: Onset Detection

1. Take the Fourier Transform of frames
2. Measure the phase
3. Predict next phase from last 2 phases
4. Diff $=$ onset detection function (DF)

Unitarsity

Step 2: Beat Period

How estimate beat period?
-> Peaks in autocorrelation (ACF) of Detection Function (DF)
But...how choose the right level?
-> weighted comb filter

DF	2hbunhburnman
ACF	MOMADADCDCDA
$\tau_{1}=20$	tempo $=260 \mathrm{bpm}$
$\tau_{2}=40$	tempo $=130 \mathrm{bpm}$
$=80$	tempo = 65 bpm

Emphasis on causal implementation (Don't use future information)

Beat Period

Beat period

ACF

Output of comb filterbank

Beat period (bpm)

Step 3: Alignment \& Prediction

(1) Align comb at beat period with strongest DF peaks

DF

Comb filter output

(2) Predict at beat period intervals

Not the end of the story...

Simple model:
Changes are hardest:
Step, Ramp, Expressive

Human tapping vs algorithm

Further refinement:
2-state model

Performance close to state-ofart (Klapuri et al, 2006) but much less complex.

Music Transcription

Polyphonic Transcription Problem

(Liszt: Etude No. 5 aus Grandes Etudes de Paganini. MIDI from Classical Piano Midi Page http://www.piano-midi.de, copyright Bernd Krueger)

Task: Extract notes
from e.g. this \qquad

Generative Model

Spectra x are weighted sum A of source s plus noise e

$$
\mathbf{x}=\mathbf{A s}+\mathbf{e}
$$

Simplest case, $s=$ activity of individual notes Assume gaussian iid e with sparse priors $p\left(s_{i}\right)$ Inferred representations s shrink towards zero
-> Sparse coding: most elements of s are zero

(Also have to handle learning the matrix A)

Example: Synthetic Harpsichord

Result: 54 non-zero vectors
Original audio

Dictionary matrix

centre for digital music

Example: Real Piano

Time domain sparse coding

Freq domain sparse coding

Beethoven:
Bagatelle, Opus 33 No. 1 in Eb Major
(a) F3 group

(b) Ab 4 group

(c) Eb5 group

Pitch groups

A single musical "note" is made up from a subspace of underlying dictionary vectors.

Dictionary vectors Activity
(a) Ab4 group

(b) Eb5 group

centre for digital music

Pitch group activities

$\xrightarrow{+}{ }^{+}$Queen Mary
centre for digital music

Visualisation

centre for digital music

Sonic Visualiser

- Viewing \& editing audio semantic descriptors
- Overlaying descriptors
- Independent zooming with linked scrolling
- Open source

Analysis: Segmentation

centre for digital music

Structure in Music

The Beatles - Let it Be

Finding repeating patterns

Look for repeating changes of texture (timbre)
Large approximate pattern: the verse

Interaction: B-Keeper

B-Keeper

User-controlled parameters

[Video]

Part 2. Source Separation

Mixing musical audio

Concert room or conference room
Studio

Source Separation from Mono Mix

If no of sources $=$ no of microphones:
-> use independent component analysis (ICA) and variants.
But what if fewer microphones - or only one?
Sources Observation Separated Signals

One approach: Nonnegative Matrix Factorization (NMF) of spectrograms.
Queen Mary
University of London

Nonnegative Matrix Factorization

Lee \& Seung (2000)
Decompose spectrogram matrix V into nonnegative product:

$\mathbf{V} \approx \mathbf{W H}$

Decomposition:

NMF Example

Separate the audio using time-freq masking. Basis vectors can be grouped by hand. Also investigating source-directed grouping.

Artificial mixture

Source Separation from Stereo

For pan-potted stereo, sources have "angle": $\theta_{i}=\arctan \left(x_{2} / x_{1}\right)$
Transform into a sparse representation of the sources.
Typically short-time Fourier transform (STFT) used.

4 sources mixed to stereo (2 channels)

Separate ith source by keeping only components arriving near its "angle"

Development of DUET algorithm (Yilmaz \&
Rickard, 2004)

Cosine Packet Trees

Alternative to STFT... Adapt frame size to signal.

Can do this efficiently with Cosine Packet Tree / Best Basis (Coifman \& Wickerhauser, 1992)

Stereo Separation Example

A synthetic mixture of "real" tracks (Personalized Perfection by Another Dreamer)

$$
\binom{x_{1}}{x_{2}}=\left(\begin{array}{llll}
0.90 & 0.71 & 0.50 & 0.28 \\
0.09 & 0.29 & 0.50 & 0.72
\end{array}\right)\left(\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3} \\
s_{4}
\end{array}\right)
$$

Original Sources

Stereo Mix

Estimated Sources
Percussion
Guitar 1
Vocal
Guitar 2

Convolutive Stereo Mixtures

- Sparsifying transform in place of STFT
- Finds basis functions with delays

10000000000000000000

Measure left-right delay to find direction of arrival (DOA)
Queen Mary
University of London

Cluster delays to find sources

Results

Mixtures

Freq Domain ICA
(Frame size=256)

Summary

- Interesting (and hard!) problem domain
- Seen some approaches to:
- Music audio analysis:
- Onset detection \& beat tracking
- Source separation
- Music transcription
- Visualisation
- Source Separation
- Single Channel
- Multi channel

Many thanks to...

- Samer Abdallah
- Juan Bello
- Paul Brossier
- Chris Cannam
- Matthew Davies
- Mike Davies
- Maria Jafari
- Chris Harte
- Chris Landone
- Andrew Nesbit
- Mark Sandler
- Emmanuel Vincent
- Beiming Wang
and others...

