Analysing Musical Audio

Mark Plumbley Centre for Digital Music Queen Mary, University of London

Outline

A snapshot / lightning tour of some of our work in:

- Musical Audio Analysis
 - Beat Analysis
 - Music Transcription
 - Visualisation
 - Interaction
- Audio Source Separation

Part 1. Musical Audio Analysis Beat analysis

Step 1: Onset Detection

- 1. Take the Fourier Transform of frames
- 2. Measure the phase
- 3. Predict next phase from last 2 phases
- 4. Diff = onset detection function (DF)

Step 2: Beat Period

How estimate beat period? -> Peaks in autocorrelation (ACF) of Detection Function (DF)

- But...how choose the right level?
- -> weighted comb filter

Emphasis on *causal* implementation (Don't use future information)

Beat Period

Step 3: Alignment & Prediction

(1) Align comb at beat period with strongest DF peaks

Not the end of the story...

Simple model:

Changes are hardest:

Step, Ramp, Expressive

Human tapping vs algorithm

Performance close to state-ofart (Klapuri et al, 2006) but much less complex.

Music Transcription

Polyphonic Transcription Problem

Generative Model

Spectra x are weighted sum A of source s plus noise e

 $\mathbf{x} = \mathbf{A}\mathbf{s} + \mathbf{e}$

Simplest case, s = activity of individual notes Assume gaussian iid e with sparse priors p(s_i) Inferred representations s shrink towards zero -> Sparse coding: most elements of s are zero

(Also have to handle learning the matrix A)

Example: Synthetic Harpsichord

University of London

Example: Real Piano

Time domain sparse coding

Freq domain sparse coding

Time in beats

Pitch groups

A single musical "note" is made up from a subspace of underlying dictionary vectors.

Pitch group activities

University of London

Visualisation

Sonic Visualiser

- Viewing & editing audio semantic descriptors
- Overlaying descriptors
- Independent zooming with linked scrolling
- Open source

Analysis: Segmentation

Structure in Music

The Beatles – Let it Be

Finding repeating patterns

Look for repeating changes of texture (timbre) Large approximate pattern: the verse

Interaction: B-Keeper

[Video]

Part 2. Source Separation

Mixing musical audio

Concert room or conference room

Studio

Source Separation from Mono Mix

If no of sources = no of microphones: -> use independent component analysis (ICA) and variants. But what if fewer microphones – or only one?

One approach: Nonnegative Matrix Factorization (NMF) of spectrograms.

Nonnegative Matrix Factorization

Lee & Seung (2000) Decompose spectrogram matrix V into nonnegative product: $\mathbf{V} \approx \mathbf{W}\mathbf{H}$

Decomposition:

NMF Example

the Spectrogram of the Mixture

Time

=

Х

0.05

300

× 10

100

100

100

100

100

100

50

50

0.9

0.7 0.6

uant 0.5

0.4 0.3 0.2

0.1

8 Columns of W

150

150

150

150

58

50

100

100

200

200

200

200

Separate the audio using *time-freq masking*. Basis vectors can be grouped by hand. Also investigating source-directed grouping.

Artificial mixture

3 4 5

250

250

250

250

250

Source Separation from Stereo

For pan-potted stereo, sources have "angle": $\theta_i = \arctan(x_2 / x_1)$ Transform into a *sparse* representation of the sources. Typically short-time Fourier transform (STFT) used.

4 sources mixed to stereo (2 channels)

Separate *i*th source by keeping only components arriving near its "angle"

Development of DUET algorithm (Yilmaz & Rickard, 2004)

Cosine Packet Trees

Alternative to STFT... Adapt frame size to signal.

Can do this efficiently with Cosine Packet Tree / Best Basis (Coifman & Wickerhauser, 1992)

Stereo Separation Example

A synthetic mixture of "real" tracks (*Personalized Perfection* by Another Dreamer)

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0.90 & 0.71 & 0.50 & 0.28 \\ 0.09 & 0.29 & 0.50 & 0.72 \end{pmatrix} \begin{pmatrix} s_1 \\ s_2 \\ s_3 \\ s_4 \end{pmatrix}$$

Original Sources

Stereo Mix

Estimated Sources Q Percussion Q Guitar 1 Vocal

Convolutive Stereo Mixtures

- Sparsifying transform in place of STFT
- Finds basis functions with delays

Cluster delays to find sources

Sparsified Basis (Frame size=256)

Summary

- Interesting (and hard!) problem domain
- Seen some approaches to:
 - Music audio analysis:
 - Onset detection & beat tracking
 - Source separation
 - Music transcription
 - Visualisation
 - Source Separation
 - Single Channel
 - Multi channel

Many thanks to ...

- Samer Abdallah
- Juan Bello
- Paul Brossier
- Chris Cannam
- Matthew Davies
- Mike Davies
- Maria Jafari

- Chris Harte
- Chris Landone
- Andrew Nesbit
- Mark Sandler
- Emmanuel Vincent
- Beiming Wang

and others...

